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Digital Subtraction Angiography (DSA)
3D-DSA in Interventional Neuroradiology
Critical to diagnosis and guidance of treatment
  - Subarachnoid hemorrhage (>27k per year in the US [1])
  - Stroke (over 101 million worldwide [2])
  - Arterial Vascular Malformation (AVM)
Relies on 2D-DSA for temporal information
  → Limited by vessel overlap [3]

From 3D to 4D-DSA [4]
Time-resolved 3D-DSA sequence
  - Volumetric visualization + flow quantification
  - Complements 3D-DSA
   Diagnosis of AVMs [5]  
   Treatment of Intracranial Aneurysms [6]

DSA of Venous 
Aneurysm [7]

[1] J. Brisman, et al, New England Journal of Medicine, 2006. 
[2] Wolfe, C. D. A. The impact of stroke. Br Med Bull, 2000
[3] K.L. Ruedinger, et al,  AJNR, 2021 
[4] B.J. Davis, Implementation and Evaluation of 4D-DSA, 2023 4D-DSA Flow Estimation [7]

[5] C. Sandoval-Garcia, et al,. AJNR, 2017
[6] K.L. Ruedinger, et al,  AJNR, 2018 
[7] C. Wu, et al. Clin Neuroradiol, 2015



Challenges to DSA Image Quality - Motion
3D/4D DSA Requirements
Spatial alignment (Mask + Contrast)
  - No intra-scan inconsistent artifacts 
  - Perfect spatial registration

Challenges from Motion
Prevalent source of artifacts in 4D-DSA [1] 
>82% CBCT (~6% severe) [2]

Moderate acquisition time (4-20 s)
  - Intra-scan patient motion (trajectory)
Two independent scans
  - Inter-scan misalignment (global pose)

→ Joint estimation of intra and inter-scan 
motion

[1] P.F. Samp, et al, ANJR.  2023
[2] R. Spin-Neto, A. Wenzel, Oral Surgery, Oral Medicine, 2016

Mask Scan, 𝑝𝑁𝐶Contrast Scan, 𝑝𝐶𝐸

2D Projection
Subtraction

3D Reconstruction
Subtraction 4D-DSA

[3] R.I. Ionasec, et al. Computerized Medical Imaging and Graphics, 33(4), 256, 2009
[4] J. Montoya, et al. American Journal of Neuroradiology, 39(5), 916, 2018

Ionasec, et al. [3] Montoya, et al. [4] 
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Deep Autofocus in Interventional CBCT

Motion Compensation in CBCT
Immobilization and breath-holding → Not sufficient
Fiducial markers → Fit poorly with interventional workflow
Gating → Difficult for long scan - only one motion source
Tracking of prior image → Prior unavailable

Deep Autofocus Motion Compensation
Rigid motion compensation1,2,3 (extremity, brain/head)
Deformable motion compensation (abdomen) 4

Learned deep autofocus metric
Anatomy-aware learned metrics 5 

Adaptive Motion Models6,7

→ Applicable to 4-DSA

Motion-Corrupted Deep Autofocus3 

[4] S. Capostagno, et al. Physics in Medicine and Biology, 2020
[5] H Huang, et al. Medical Physics, 2024
[6] H Huang, et al., SPIE Medical Imaging, 2023 [7] A Lu, et al., SPIE Medical Imaging, 2024

[1] J. Hahn, et al. Med. Phys. 44(11), 5795-5813, 2017.
[2] A. Sisniega, et al. Phys. Med. Biol. 62(9), 3712–3734, 2017
[3]  H Huang et al 2022 Phys. Med. Biol. 67 125020
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Contrast Matching in Projection

Motion Compensation

Framework for Motion Compensated 4D-DSA

Deep 
Autofocus

Joint Autofocus
Registration

Appearance
Matching+

Motion Corrupted Mask, 𝑝𝑁𝐶

Motion Corrupted Angio, 𝑝𝐶𝐸

Motion Compensated 3D Mask, 𝑢𝑁𝐶
∗

Motion Compensated 3D Angio, 𝑢𝐶𝐸
∗

Synthetic 2D Angio, 𝑝𝐷𝑆𝐴

Synthetic 3D Angio, 𝑢′𝐶𝐸

Standard 4D-DSA

Mask: Intra-Scan motion 
  - Rigid deep autofocus 

Angio: Intra- and Inter-Scan Motion
  - Joint autofocus and registration

→ Motion-Compensated 3D-DSA

Synthetic contrast
  - Injected into mask
Appearance-matching loss
  - Matching flow-encoding features
 
→ Estimated 2D Contrast Flow
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Intra-Scan Motion in Mask: Deep Autofocus
Deep Autofocus 
  - Anatomy-aware learned metric 𝑉𝐼𝐹𝐷𝐿 [1]
  - Differentiable motion model
   - Implicit Neural Representation (INR)
  - Gradient-based optimization [2]

𝑻𝑁𝐶
∗ = argmin

𝝓
𝑽𝑰𝑭𝑫𝑳 𝐹𝐷𝐾 𝑝𝑁𝐶, 𝑻 , 𝒖𝑁𝐶

∗ = 𝐹𝐷𝐾 𝑝𝑁𝐶, 𝑻𝑁𝐶
∗

[1] H. Huang, et al. Med. Phys. 2024
[2] H. Huang, et al. SPIE Medical Imaging, 2023

INR 𝜙𝑁𝐶(𝑡)

FDK 𝑉𝐼𝐹𝐷𝐿

Gradient Backpropagation
Motion Corrupted 
Projections, 𝑝𝑁𝐶 Mo-Co Mask

𝑇 =  𝜙 𝑡 : ℝ1 ↦ ℝ6

𝑡 𝑻

Motion-Encoding INR
  - Continuous function approximator
  - 𝑻 = 𝜙(𝑡) - 6 DoF per projection 
  - Continuous input/output space
  - Fully connected network
  3 hidden layers, 64 features each

𝑢𝑁𝐶
∗



Motion and Pose in Angio: Reference Autofocus
Joint Autofocus and Registration
  - Motion compensated mask as reference
  - Joint optimization:
   - Intra-scan motion with 𝑉𝐼𝐹𝐷𝐿
   - Residual motion and registration with MSE vs reference

𝑻𝐶𝐸
∗ = argmin

𝝓
𝒖𝑁𝐶

∗  −  𝐹𝐷𝐾 𝑝𝐶𝐸, 𝑻 2 , 𝒖𝐶𝐸
∗ = 𝐹𝐷𝐾 𝑝𝐶𝐸, 𝑻𝐶𝐸

∗

[1] H. Huang, et al. Med. Phys. 2024
[2] H. Huang, et al. SPIE Medical Imaging, 2023

MSE
𝑉𝐼𝐹𝐷𝐿

Motion-Corrupted 
Projections, 𝑝𝐶𝐸

Gradient backpropagation

Mo-Co Angio Mo-Co Mask

𝑢𝐶𝐸
∗ 𝑢𝑁𝐶

∗

INR 𝜙𝐶𝐸(𝑡)

FDK
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Appearance

Matching+

Synthetic 2D Angio, 𝑝𝐷𝑆𝐴
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Challenge
Projection matching with motion
Motion modifies ray paths 
→ Direct subtraction is invalid



Contrast Projection Estimation

𝑝𝐷𝑆𝐴
∗ = argmin

𝑝𝐷𝑆𝐴
𝒖𝐶𝐸

∗  −  𝐹𝐷𝐾 𝑝𝑁𝐶 + 𝑝𝐷𝑆𝐴, 𝜙𝑁𝐶(𝑡) 2 + 𝛽 ∙ 𝑇𝑉(𝑝𝐷𝑆𝐴)

𝜙 𝑢, 𝑣, 𝑡
ℝ3 ↦ ℝ1

FDK Distortion-matching
MSE

𝜙𝑁𝐶(𝑡)

Gradient 
Back-
propagation

Motion Corrupted Synthetic Contrast Projection
𝑝𝑁𝐶 + 𝑝𝐷𝑆𝐴

Motion Corrupted Mask 
Projection, 𝑝𝑁𝐶

Synthetic Contrast
𝑝𝐷𝑆𝐴(𝑢, 𝑣, 𝑡)

Mo-Co Synthetic Angio
𝑢𝐶𝐸

′

Mo-Co Angio
 𝑢𝐶𝐸

∗

Projection TV
 𝑇𝑉(𝑝𝐷𝑆𝐴)

Distortion Matching Loss
Time-dependent contrast creates unique image features 
→ Matching reconstruction “distortion” provides 
temporal information

INR for Contrast Synthesis
Map time-dependent pixel location to line 
integral values
→ Continuous multi-resolution transition



Validation Study

Contrast Flow
Laminar Flow (2 cm/s during 12s scan)
Time-concentration modeled using gamma function [1]

Simulated Contrast Flow

Motion Corrupted 
Mask Projections

Motion Corrupted 
Contrast Projections

Acquisition Geometry
Angle: 0° - 215° (304 projections)
Detector: 580x440 pixels (0.616x0.616 mm)
SAD: 750 mm  SDD: 1200 mm

Motion Pattern
Amplitude: 2 – 6 mm 
Frequency: 2 – 4 periods per scan 
Inter-Scan Phase Shift: ~90 degrees (random)

Simulation Phantom
CT scan of Kagaku phantom (Kyoto Kagaku, Japan)
 -  Contrast-enhanced vascularity:
  - Left-anterior and left-middle cerebral arteries 
  - Internal carotid artery

Kagaku Phantom



Evaluation
Motion Compensation Fidelity
Intra-scan Motion Compensation
  SSIM of Mask and Angio volumes
Vascular Tree Integrity
  DICE score of 3D-DSA
Contrast Projection Estimation Accuracy
Vasculature Detection
  Precision and recall
Contrast Flow Accuracy
  Pixel-wise mean average error (MAE)
4D-DSA Quality
Contrast Flow Quantification
  MAE of 4D-DSA
Contrast Time of arrival (TOA) 
  Fitting 4D-DSA to gamma function

Fitted gamma 
function

4D-DSA contrast flow

𝜇 𝑡 =
𝐴

⍺𝛽 exp −1 ⍺ 𝜏⍺exp −
𝜏
𝛽

H(𝜏)

𝜏 𝑡 = (𝑡 − 𝒕𝟎)/𝜂, where 𝒕𝟎 is TOA

𝑡



Motion Compensation Fidelity

Motion-corrupted Motion-CompensatedGround truth

Moderate Motion
 (4mm, 2.6 cycles 

per scan)



Contrast Projection Estimation Accuracy

Motion-corrupted Motion-CompensatedGround truth

Moderate Motion 
(4mm, 2.6 cycles 

per scan)



4D-DSA Quality

Motion-corrupted Motion-CompensatedMotion-FreeGround Truth
SecondsModerate Motion (4mm, 2.6 cycles per scan)



Conclusion 
Motion Compensated 4D-DSA Framework 
Joint Deep Autofocus & Registration: 
 Learning-based metric, INR of motion trajectory
Contrast Projection Synthesis: 
 Appearance-matching loss, projection intensity encoded by INR

Simulation Study
3D-DSA: 
 SSIM increase: 11.8%
 DICE score increase: ~3 times higher
Contrast Projection Estimation:
 MAE reduction: 93.3%  
 False detection reduction: 88.2%
4D-DSA:
 Estimated TOA error reduction:   94.8%

Ongoing Work
Application to clinical data
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